Math 10a September 16, 2014 Derivatives

- 1. Use the limit definition of the derivative to compute the derivative of \sqrt{x} at x = 5. (hint: you may need to multiply the top and bottom of the fraction by something)
- 2. For each of the following, functions, write it as a composition $f \circ g$ for some functions f and g. Compute the derivatives of f and g, and then find the derivative of $f \circ g$.

 e^{x^2} , $(x+1)^3$, $\ln(\sqrt{1+x})$, $\ln(\ln(x))$, $(\ln(x))^2$, $(x^2+6x+7)^9$.

- 3. Is $e^{\cos(x)}$ an increasing function?
- 4. Differentiate the following with the quotient rule:

$$\frac{1}{x-1}, \ \frac{1}{(x-1)^2}, \ \frac{x-2}{x-3}, \ \frac{\ln(\ln(x))}{x^2+2x+3}$$

5. Compute the second derivatives of

$$e^{x^2}$$
, $\cos(\sqrt{x})$, $(x^2 + 5x + 1)^3$

- 6. Find a parabola with y-intercept (0, 6), x-intercept (4, 0) and such that the slope of its tangent line as it crosses the x-axis is -3 (hint: write $ax^2 + bx + c$ and solve for a, b, and c.)
- 7. The second derivative of a parabola at its vertex is negative. What can you say about the parabola?
- 8. Let $f(x) = x^3 x$. What is the equation of the tangent line to f at x = 0?
- 9. Let $f(x) = \cos(x)$. What is the equation of the tangent line to f at $x = \frac{\pi}{4}$? (hint: if a line goes through a point (a, b) with slope m, then all points (x, y) on the line satisfy $\frac{y-b}{x-a} = m$ —this is just the definition of the slope—so the equation of the line is y b = m(x a).)
- 10. Let $f(x) = (x+4)^3$. What is the equation of the tangent line to f at (-2,9)?
- 11. In each of the following, find an equation for $\frac{dy}{dx}$ in terms of x and y.

$$x^{2} + y^{2} = 1$$
, $y^{2} = x^{3} - x^{2}$, $\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{x}} = 1$.

- 12. Using the fact that $\tan(\arctan(x)) = x$, show that the derivative of $\arctan(x)$ is $\frac{1}{1+x^2}$.
- 13. Suppose $y^2 = x^3 x + 1$. Find the points where the y' = 0. Use this information, plus intercepts, to sketch a graph of the curve satisfying this relation.